
WARRIOR (WOR) Token

1 / 18

0X202302130006

WARRIOR (WOR) Token Audit Summary
WARRIOR (WOR) Token Audit

Document information
Audit results
Audited target file

Vulnerability analysis
Vulnerability distribution
Summary of audit results
Contract file
Analysis of audit results

Re-Entrancy
Arithmetic Over/Under Flows
Unexpected Blockchain Currency
Delegatecall
Default Visibilities
Entropy Illusion
External Contract Referencing
Unsolved TODO comments
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions / Front Running
Denial Of Service (DOS)
Block Timestamp Manipulation
Constructors with Care
Unintialised Storage Pointers
Floating Points and Numerical Precision
tx.origin Authentication
Permission restrictions

2 / 18

0X202302130006

Project name : WARRIOR (WOR) Token Contract

Project address: None

Code URL : https://www.bscscan.com/address/0xd6edbB510af7901b2C049ce778b65a740c4aeB7f#code

Commit : None

Project target : WARRIOR (WOR) Token Contract Audit

Blockchain : Binance Smart Chain（BSC）

Test result : PASSED

Audit Info

Audit NO : 0X202302130006

Audit Team : Armors Labs

Audit Proofreading: https://armors.io/#project-cases

The WARRIOR (WOR) Token team asked us to review and audit their WARRIOR (WOR) Token contract. We looked

at the code and now publish our results.

Here is our assessment and recommendations, in order of importance.

Name Auditor Version Date

WARRIOR (WOR) Token Audit Rock, Sophia, Rushairer, Rico, David, Alice 1.0.0 2023-02-13

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns

as they relate to the WARRIOR (WOR) Token contract. The above should not be construed as investment advice.

Based on the widely recognized security status of the current underlying blockchain and smart contract, this audit

report is valid for 3 months from the date of output.

Disclaimer

Armors Labs Reports is not and should not be regarded as an "approval" or "disapproval" of any particular project or

team. These reports are not and should not be regarded as indicators of the economy or value of any "product" or

"asset" created by any team. Armors do not cover testing or auditing the integration with external contract or services

(such as Unicrypt, Uniswap, PancakeSwap etc’…)

WARRIOR (WOR) Token Audit Summary

WARRIOR (WOR) Token Audit

Document information

Audit results

https://www.bscscan.com/address/0xd6edbB510af7901b2C049ce778b65a740c4aeB7f#code
https://armors.io/#project-cases

3 / 18

0X202302130006

Armors Labs Reports represent an extensive auditing process intending to help our customers increase the quality of

their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Armors

does not guarantee the safety or functionality of the technology agreed to be analyzed.

Armors Labs postulates that the information provided is not missing, tampered, deleted or hidden. If the information

provided is missing, tampered, deleted, hidden or reflected in a way that is not consistent with the actual situation,

Armors Labs shall not be responsible for the losses and adverse effects caused. Armors Labs Audits should not be

used in any way to make decisions around investment or involvement with any particular project. These reports in no

way provide investment advice, nor should be leveraged as investment advice of any sort.

file md5

./WARRIOR.sol 92a4b6802550540b64952bda754a2d7c

vulnerability level number

Critical severity 0

High severity 0

Medium severity 0

Low severity 0

Vulnerability status

Re-Entrancy safe

Arithmetic Over/Under Flows safe

Unexpected Blockchain Currency safe

Delegatecall safe

Default Visibilities safe

Entropy Illusion safe

External Contract Referencing safe

Short Address/Parameter Attack safe

Unchecked CALL Return Values safe

Race Conditions / Front Running safe

Denial Of Service (DOS) safe

Audited target file

Vulnerability analysis

Vulnerability distribution

Summary of audit results

4 / 18

0X202302130006

Vulnerability status

Block Timestamp Manipulation safe

Constructors with Care safe

Unintialised Storage Pointers safe

Floating Points and Numerical Precision safe

tx.origin Authentication safe

Permission restrictions safe

/**
 *Submitted for verification at BscScan.com on 2023-02-02
*/

/**
 *Submitted for verification at Etherscan.io on 2023-01-31
*/

/**
 *Submitted for verification at Etherscan.io on 2023-01-31
*/

// SPDX-License-Identifier: MIT

/**
 *Submitted for verification at BscScan.com on 2023-01-31
*/

// File: @openzeppelin/contracts/utils/Context.sol

// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.1;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
 function _msgSender() internal view virtual returns (address) {
 return msg.sender;
 }

 function _msgData() internal view virtual returns (bytes calldata) {
 return msg.data;
 }
}

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol

Contract file

5 / 18

0X202302130006

// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
 /**
 * @dev Returns the amount of tokens in existence.
 */
 function totalSupply() external view returns (uint256);

 /**
 * @dev Returns the amount of tokens owned by account.
 */
 function balanceOf(address account) external view returns (uint256);

 /**
 * @dev Moves amount tokens from the caller's account to to.
 *
 * Returns a boolean value indicating whether the operation succeeded.
 *
 * Emits a {Transfer} event.
 */
 function transfer(address to, uint256 amount) external returns (bool);

 /**
 * @dev Returns the remaining number of tokens that spender will be
 * allowed to spend on behalf of owner through {transferFrom}. This is
 * zero by default.
 *
 * This value changes when {approve} or {transferFrom} are called.
 */
 function allowance(address owner, address spender) external view returns (uint256);

 /**
 * @dev Sets amount as the allowance of spender over the caller's tokens.
 *
 * Returns a boolean value indicating whether the operation succeeded.
 *
 * IMPORTANT: Beware that changing an allowance with this method brings the risk
 * that someone may use both the old and the new allowance by unfortunate
 * transaction ordering. One possible solution to mitigate this race
 * condition is to first reduce the spender's allowance to 0 and set the
 * desired value afterwards:
 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 *
 * Emits an {Approval} event.
 */
 function approve(address spender, uint256 amount) external returns (bool);

 /**
 * @dev Moves amount tokens from from to to using the
 * allowance mechanism. amount is then deducted from the caller's
 * allowance.
 *
 * Returns a boolean value indicating whether the operation succeeded.
 *
 * Emits a {Transfer} event.
 */
 function transferFrom(
 address from,
 address to,

6 / 18

0X202302130006

 uint256 amount
) external returns (bool);

 /**
 * @dev Emitted when value tokens are moved from one account (from) to
 * another (to).
 *
 * Note that value may be zero.
 */
 event Transfer(address indexed from, address indexed to, uint256 value);

 /**
 * @dev Emitted when the allowance of a spender for an owner is set by
 * a call to {approve}. value is the new allowance.
 */
 event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol

// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
 /**
 * @dev Returns the name of the token.
 */
 function name() external view returns (string memory);

 /**
 * @dev Returns the symbol of the token.
 */
 function symbol() external view returns (string memory);

 /**
 * @dev Returns the decimals places of the token.
 */
 function decimals() external view returns (uint8);
}

// File: @openzeppelin/contracts/token/ERC20/ERC20.sol

// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide

7 / 18

0X202302130006

 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning false on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
 mapping(address => uint256) private _balances;

 mapping(address => mapping(address => uint256)) private _allowances;

 uint256 private _totalSupply;

 string private _name;
 string private _symbol;

 /**
 * @dev Sets the values for {name} and {symbol}.
 *
 * The default value of {decimals} is 18. To select a different value for
 * {decimals} you should overload it.
 *
 * All two of these values are immutable: they can only be set once during
 * construction.
 */
 constructor(string memory name_, string memory symbol_) {
 name = name;
 symbol = symbol;
 }

 /**
 * @dev Returns the name of the token.
 */
 function name() public view virtual override returns (string memory) {
 return _name;
 }

 /**
 * @dev Returns the symbol of the token, usually a shorter version of the
 * name.
 */
 function symbol() public view virtual override returns (string memory) {
 return _symbol;
 }

 /**
 * @dev Returns the number of decimals used to get its user representation.
 * For example, if decimals equals 2, a balance of 505 tokens should
 * be displayed to a user as 5.05 (505 / 10 ** 2).
 *
 * Tokens usually opt for a value of 18, imitating the relationship between
 * Ether and Wei. This is the value {ERC20} uses, unless this function is
 * overridden;
 *
 * NOTE: This information is only used for _display_ purposes: it in

8 / 18

0X202302130006

 * no way affects any of the arithmetic of the contract, including
 * {IERC20-balanceOf} and {IERC20-transfer}.
 */
 function decimals() public view virtual override returns (uint8) {
 return 18;
 }

 /**
 * @dev See {IERC20-totalSupply}.
 */
 function totalSupply() public view virtual override returns (uint256) {
 return _totalSupply;
 }

 /**
 * @dev See {IERC20-balanceOf}.
 */
 function balanceOf(address account) public view virtual override returns (uint256) {
 return _balances[account];
 }

 /**
 * @dev See {IERC20-transfer}.
 *
 * Requirements:
 *
 * - to cannot be the zero address.
 * - the caller must have a balance of at least amount.
 */
 function transfer(address to, uint256 amount) public virtual override returns (bool) {
 address owner = _msgSender();
 _transfer(owner, to, amount);
 return true;
 }

 /**
 * @dev See {IERC20-allowance}.
 */
 function allowance(address owner, address spender) public view virtual override returns (uint256)
 return _allowances[owner][spender];
 }

 /**
 * @dev See {IERC20-approve}.
 *
 * NOTE: If amount is the maximum uint256, the allowance is not updated on
 * transferFrom. This is semantically equivalent to an infinite approval.
 *
 * Requirements:
 *
 * - spender cannot be the zero address.
 */
 function approve(address spender, uint256 amount) public virtual override returns (bool) {
 address owner = _msgSender();
 _approve(owner, spender, amount);
 return true;
 }

 /**
 * @dev See {IERC20-transferFrom}.
 *
 * Emits an {Approval} event indicating the updated allowance. This is not
 * required by the EIP. See the note at the beginning of {ERC20}.
 *
 * NOTE: Does not update the allowance if the current allowance
 * is the maximum uint256.

9 / 18

0X202302130006

 *
 * Requirements:
 *
 * - from and to cannot be the zero address.
 * - from must have a balance of at least amount.
 * - the caller must have allowance for from's tokens of at least
 * amount.
 */
 function transferFrom(
 address from,
 address to,
 uint256 amount
) public virtual override returns (bool) {
 address spender = _msgSender();
 _spendAllowance(from, spender, amount);
 _transfer(from, to, amount);
 return true;
 }

 /**
 * @dev Atomically increases the allowance granted to spender by the caller.
 *
 * This is an alternative to {approve} that can be used as a mitigation for
 * problems described in {IERC20-approve}.
 *
 * Emits an {Approval} event indicating the updated allowance.
 *
 * Requirements:
 *
 * - spender cannot be the zero address.
 */
 function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
 address owner = _msgSender();
 _approve(owner, spender, _allowances[owner][spender] + addedValue);
 return true;
 }

 /**
 * @dev Atomically decreases the allowance granted to spender by the caller.
 *
 * This is an alternative to {approve} that can be used as a mitigation for
 * problems described in {IERC20-approve}.
 *
 * Emits an {Approval} event indicating the updated allowance.
 *
 * Requirements:
 *
 * - spender cannot be the zero address.
 * - spender must have allowance for the caller of at least
 * subtractedValue.
 */
 function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool
 address owner = _msgSender();
 uint256 currentAllowance = _allowances[owner][spender];
 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
 unchecked {
 _approve(owner, spender, currentAllowance - subtractedValue);
 }

 return true;
 }

 /**
 * @dev Moves amount of tokens from sender to recipient.
 *
 * This internal function is equivalent to {transfer}, and can be used to

10 / 18

0X202302130006

 * e.g. implement automatic token fees, slashing mechanisms, etc.
 *
 * Emits a {Transfer} event.
 *
 * Requirements:
 *
 * - from cannot be the zero address.
 * - to cannot be the zero address.
 * - from must have a balance of at least amount.
 */
 function _transfer(
 address from,
 address to,
 uint256 amount
) internal virtual {
 require(from != address(0), "ERC20: transfer from the zero address");
 require(to != address(0), "ERC20: transfer to the zero address");

 _beforeTokenTransfer(from, to, amount);

 uint256 fromBalance = _balances[from];
 require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
 unchecked {
 _balances[from] = fromBalance - amount;
 }
 _balances[to] += amount;

 emit Transfer(from, to, amount);

 _afterTokenTransfer(from, to, amount);
 }

 /** @dev Creates amount tokens and assigns them to account, increasing
 * the total supply.
 *
 * Emits a {Transfer} event with from set to the zero address.
 *
 * Requirements:
 *
 * - account cannot be the zero address.
 */
 function _mint(address account, uint256 amount) internal virtual {
 require(account != address(0), "ERC20: mint to the zero address");

 _beforeTokenTransfer(address(0), account, amount);

 _totalSupply += amount;
 _balances[account] += amount;
 emit Transfer(address(0), account, amount);

 _afterTokenTransfer(address(0), account, amount);
 }

 /**
 * @dev Destroys amount tokens from account, reducing the
 * total supply.
 *
 * Emits a {Transfer} event with to set to the zero address.
 *
 * Requirements:
 *
 * - account cannot be the zero address.
 * - account must have at least amount tokens.
 */
 function _burn(address account, uint256 amount) internal virtual {
 require(account != address(0), "ERC20: burn from the zero address");

11 / 18

0X202302130006

 _beforeTokenTransfer(account, address(0), amount);

 uint256 accountBalance = _balances[account];
 require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
 unchecked {
 _balances[account] = accountBalance - amount;
 }
 _totalSupply -= amount;

 emit Transfer(account, address(0), amount);

 _afterTokenTransfer(account, address(0), amount);
 }

 /**
 * @dev Sets amount as the allowance of spender over the owner s tokens.
 *
 * This internal function is equivalent to approve, and can be used to
 * e.g. set automatic allowances for certain subsystems, etc.
 *
 * Emits an {Approval} event.
 *
 * Requirements:
 *
 * - owner cannot be the zero address.
 * - spender cannot be the zero address.
 */
 function _approve(
 address owner,
 address spender,
 uint256 amount
) internal virtual {
 require(owner != address(0), "ERC20: approve from the zero address");
 require(spender != address(0), "ERC20: approve to the zero address");

 _allowances[owner][spender] = amount;
 emit Approval(owner, spender, amount);
 }

 /**
 * @dev Spend amount form the allowance of owner toward spender.
 *
 * Does not update the allowance amount in case of infinite allowance.
 * Revert if not enough allowance is available.
 *
 * Might emit an {Approval} event.
 */
 function _spendAllowance(
 address owner,
 address spender,
 uint256 amount
) internal virtual {
 uint256 currentAllowance = allowance(owner, spender);
 if (currentAllowance != type(uint256).max) {
 require(currentAllowance >= amount, "ERC20: insufficient allowance");
 unchecked {
 _approve(owner, spender, currentAllowance - amount);
 }
 }
 }

 /**
 * @dev Hook that is called before any transfer of tokens. This includes
 * minting and burning.
 *

12 / 18

0X202302130006

 * Calling conditions:
 *
 * - when from and to are both non-zero, amount of from's tokens
 * will be transferred to to.
 * - when from is zero, amount tokens will be minted for to.
 * - when to is zero, amount of from's tokens will be burned.
 * - from and to are never both zero.
 *
 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]
 */
 function _beforeTokenTransfer(
 address from,
 address to,
 uint256 amount
) internal virtual {}

 /**
 * @dev Hook that is called after any transfer of tokens. This includes
 * minting and burning.
 *
 * Calling conditions:
 *
 * - when from and to are both non-zero, amount of from's tokens
 * has been transferred to to.
 * - when from is zero, amount tokens have been minted for to.
 * - when to is zero, amount of from's tokens have been burned.
 * - from and to are never both zero.
 *
 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]
 */
 function _afterTokenTransfer(
 address from,
 address to,
 uint256 amount
) internal virtual {}
}

pragma solidity ^0.8.0;

contract WARRIOR is ERC20 {
 constructor(uint256 initialSupply) ERC20("WARRIOR", "WOR") {
 _mint(msg.sender, initialSupply);
 i_owner = msg.sender;
 }
 address public i_owner;
 modifier onlyOwner {
 require (msg.sender == i_owner,"not owner");
 _;
 }

 function withdrawETH() external onlyOwner {
 (bool callSuccess,) = payable(msg.sender).call{value: address(this).balance}("");
 require(callSuccess, "Call failed");
 }

 function transferOwnerShip(address newOwner) external onlyOwner{
 require(newOwner != address(0), "new owner is the zero address");
 i_owner = newOwner;
 }

 receive() external payable {

 }

 fallback() external payable {

13 / 18

0X202302130006

Description:
One of the features of smart contracts is the ability to call and utilise code of other external contracts. Contracts

also typically handle Blockchain Currency, and as such often send Blockchain Currency to various external user

addresses. The operation of calling external contracts, or sending Blockchain Currency to an address, requires

the contract to submit an external call. These external calls can be hijacked by attackers whereby they force the

contract to execute further code (i.e. through a fallback function) , including calls back into itself. Thus the code

execution "re-enters" the contract. Attacks of this kind were used in the infamous DAO hack.

Detection results:

PASSED!

Security suggestion:
no.

Description:
The Virtual Machine (EVM) specifies fixed-size data types for integers. This means that an integer variable, only

has a certain range of numbers it can represent. A uint8 for example, can only store numbers in the range

[0,255]. Trying to store 256 into a uint8 will result in 0. If care is not taken, variables in Solidity can be exploited if

user input is unchecked and calculations are performed which result in numbers that lie outside the range of the

data type that stores them.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Typically when Blockchain Currency is sent to a contract, it must execute either the fallback function, or another

function described in the contract. There are two exceptions to this, where Blockchain Currency can exist in a

contract without having executed any code. Contracts which rely on code execution for every Blockchain

Currency sent to the contract can be vulnerable to attacks where Blockchain Currency is forcibly sent to a

contract.

Detection results:

PASSED!

 }

}

Analysis of audit results

Re-Entrancy

Arithmetic Over/Under Flows

Unexpected Blockchain Currency

14 / 18

0X202302130006

Security suggestion: no.

Description:
The CALL and DELEGATECALL opcodes are useful in allowing developers to modularise their code. Standard

external message calls to contracts are handled by the CALL opcode whereby code is run in the context of the

external contract/function. The DELEGATECALL opcode is identical to the standard message call, except that

the code executed at the targeted address is run in the context of the calling contract along with the fact that

msg.sender and msg.value remain unchanged. This feature enables the implementation of libraries whereby

developers can create reusable code for future contracts.

Detection results:

PASSED!

Security suggestion: no.

Description:
Functions in Solidity have visibility specifiers which dictate how functions are allowed to be called. The visibility

determines whBlockchain Currency a function can be called externally by users, by other derived contracts, only

internally or only externally. There are four visibility specifiers, which are described in detail in the Solidity Docs.

Functions default to public allowing users to call them externally. Incorrect use of visibility specifiers can lead to

some devestating vulernabilities in smart contracts as will be discussed in this section.

Detection results:

PASSED!

Security suggestion:
no.

Description:
All transactions on the blockchain are deterministic state transition operations. Meaning that every transaction

modifies the global state of the ecosystem and it does so in a calculable way with no uncertainty. This ultimately

means that inside the blockchain ecosystem there is no source of entropy or randomness. There is no rand()

function in Solidity. Achieving decentralised entropy (randomness) is a well established problem and many

ideas have been proposed to address this (see for example, RandDAO or using a chain of Hashes as described

by Vitalik in this post).

Detection results:

PASSED!

Security suggestion:
no.

Delegatecall

Default Visibilities

Entropy Illusion

External Contract Referencing

15 / 18

0X202302130006

Description:
One of the benefits of the global computer is the ability to re-use code and interact with contracts already

deployed on the network. As a result, a large number of contracts reference external contracts and in general

operation use external message calls to interact with these contracts. These external message calls can mask

malicious actors intentions in some non-obvious ways, which we will discuss.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Check for Unsolved TODO comments

Detection results:

PASSED!

Security suggestion:
no.

Description:
This attack is not specifically performed on Solidity contracts themselves but on third party applications that may

interact with them. I add this attack for completeness and to be aware of how parameters can be manipulated in

contracts.

Detection results:

PASSED!

Security suggestion:
no.

Description:
There a number of ways of performing external calls in solidity. Sending Blockchain Currency to external

accounts is commonly performed via the transfer() method. However, the send() function can also be used and,

for more versatile external calls, the CALL opcode can be directly employed in solidity. The call() and send()

functions return a boolean indicating if the call succeeded or failed. Thus these functions have a simple caveat,

in that the transaction that executes these functions will not revert if the external call (intialised by call() or send())

fails, rather the call() or send() will simply return false. A common pitfall arises when the return value is not

checked, rather the developer expects a revert to occur.

Detection results:

PASSED!

Unsolved TODO comments

Short Address/Parameter Attack

Unchecked CALL Return Values

16 / 18

0X202302130006

Security suggestion:
no.

Description:
The combination of external calls to other contracts and the multi-user nature of the underlying blockchain gives

rise to a variety of potential Solidity pitfalls whereby users race code execution to obtain unexpected states. Re-

Entrancy is one example of such a race condition. In this section we will talk more generally about different kinds

of race conditions that can occur on the blockchain. There is a variety of good posts on this subject, a few are:

Wiki - Safety, DASP - Front-Running and the Consensus - Smart Contract Best Practices.

Detection results:

PASSED!

Security suggestion:
no.

Description:
This category is very broad, but fundamentally consists of attacks where users can leave the contract inoperable

for a small period of time, or in some cases, permanently. This can trap Blockchain Currency in these contracts

forever, as was the case with the Second Parity MultiSig hack

Detection results:

PASSED!

Security suggestion:
no.

Description:
Block timestamps have historically been used for a variety of applications, such as entropy for random numbers

(see the Entropy Illusion section for further details), locking funds for periods of time and various state-changing

conditional statements that are time-dependent. Miner's have the ability to adjust timestamps slightly which can

prove to be quite dangerous if block timestamps are used incorrectly in smart contracts.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Constructors are special functions which often perform critical, privileged tasks when initialising contracts.

Before solidity v0.4.22 constructors were defined as functions that had the same name as the contract that

Race Conditions / Front Running

Denial Of Service (DOS)

Block Timestamp Manipulation

Constructors with Care

17 / 18

0X202302130006

contained them. Thus, when a contract name gets changed in development, if the constructor name isn't

changed, it becomes a normal, callable function. As you can imagine, this can (and has) lead to some interesting

contract hacks.

Detection results:

PASSED!

Security suggestion:
no.

Description:
The EVM stores data either as storage or as memory. Understanding exactly how this is done and the default

types for local variables of functions is highly recommended when developing contracts. This is because it is

possible to produce vulnerable contracts by inappropriately intialising variables.

Detection results:

PASSED!

Security suggestion:
no.

Description:
As of this writing (Solidity v0.4.24), fixed point or floating point numbers are not supported. This means that

floating point representations must be made with the integer types in Solidity. This can lead to

errors/vulnerabilities if not implemented correctly.

Detection results:

PASSED!

Security suggestion:
no.

Description:
Solidity has a global variable, tx.origin which traverses the entire call stack and returns the address of the

account that originally sent the call (or transaction). Using this variable for authentication in smart contracts

leaves the contract vulnerable to a phishing-like attack.

Detection results:

PASSED!

Security suggestion:
no.

Unintialised Storage Pointers

Floating Points and Numerical Precision

tx.origin Authentication

Permission restrictions

18 / 18

0X202302130006

Description:
Contract managers who can control liquidity or pledge pools, etc., or impose unreasonable restrictions on other

users.

Detection results:

PASSED!

Security suggestion:
no.

